

機器學習及多媒體資訊檢索 用於大資料分析的產學合作案例分享

張智星 台灣大學資訊系

jang@mirlab.org http://mirlab.org/jang

Outline

- Wafer failure pattern classification
- Singing voice separation and audio melody extraction

Wafer Failure Pattern Classification

張智星 (Roger Jang)

台灣大學 資工系

研究背景

- 晶圓製造業重點在於良率的提升,透過晶圓針測 (chip probing) 可以得 到晶圓圖(wafer map)。
- 過去工程師需透過肉眼觀察晶圓圖找出特定的錯誤樣式,人工的觀察 與標記勢必過於耗時。
- 研究目的
 - 將晶圓的錯誤樣式自動分類
 - 協助工程師判別錯誤樣式

非錯誤樣式(None)

Typical Failure Patterns for Small-die Wafers

• Typical failure patterns for small-die wafers

• Note that

- Colors represent different bad states
- Wafers may have different numbers of dies
- A specific failer pattern is highly correlated with a specific type of a machine's mal-function.

7

Features

- Features are the most important and valuable asset of a classification system!
- Our features
 - Regions' features
 - Geometry
 - Statistics
 - Lines and curves (Hough transform)
 - Radon transform
 - Others: Histogram of 2×2 binary patterns and number of corners

研究方法 幾何特徵 (1/3)

○ 區域性屬性 (Properties of region)

研究方法 幾何特徵 (2/3)

○ 統計性屬性

9

9/43

研究方法 幾何特徵 (3/3)

• 直線及曲線屬性

10

10/43

研究方法 Radon特徵 (1/2)

Near-full

6 8 10 12 14

20

研究方法 Radon特徵 (2/2)

$$\mathbf{G} = \begin{bmatrix} g(1,1) & g(1,2) & \cdots & g(1,\theta_{\max}) \\ g(2,1) & g(2,2) & \cdots & g(2,\theta_{\max}) \\ \vdots & \vdots & \ddots & \vdots \\ g(\rho_{\max},1) & g(\rho_{\max},2) & \cdots & g(\rho_{\max},\theta_{\max}) \end{bmatrix}$$

特徵值描述

列向量平均值(重新取樣至20 dim)

列向量標準差(重新取樣至20 dim)

列向量平均值的<u>歪度</u>(Skewness)(1)

列向量平均值的峰度(Kurtosis)(1)

列向量平均值的中位數(1)

列向量平均值中最大值(1)

列向量平均值中最大值出現的位置(1)

列向量平均值的最大减最小值(1)

12

'43

13

13/43

研究方法 其他特徵 (1/2)

○以晶圓圖2x2 binary pattern的數量為特徵值 (Dimension = 15)

 計算一片晶圓上,每一種2x2 binary pattern各出現幾次,最後用 晶圓圖晶粒數量正規化。

研究方法 其他特徵 (2/2)

○ 晶圓圖上的轉角點數量與晶粒數量的比例 (Dimension = 1)

- 不同錯誤樣式的晶圓圖轉角數量會有明顯差異
- 計算晶圓圖上共有幾個轉角點,並以晶圓圖晶粒數量正規化,作為特徵值。
 - > Harris corner detector

Cente

cornerNum = 17?

Local cornerNum = 186

Near-full correrNum = 24

實驗結果與分析 晶圓圖資料集簡介

資料名稱	E	Big-die datase	t			
晶粒數量 (Die count)		300至500				
	類別	訓練資料	測試資料	(單位:%)	訓練資料	測試資料
	Center	168	128	錯誤樣式		
資料集各種類	Local	1025	988	(Pattern) 比例	21.9	21.4
別數量(片)	Near-full	34	43	非錯誤樣式		
	Random	1262	1259	(None) 比例	78.1	78.6
	None	8881	8922	1011	I]
	Total	11370	11340			15

15/43

實驗設定說明一效能評估方式(1/2)

○ Test accuracy – 測試資料整體的辨識率結果

實驗設定說明一效能評估方式 (2/2)

實驗結果與分析

Remove "none" test accuracy - 僅計算測試資料中有錯誤樣式 (Pattern)部 0 分的辨識率(如4×5的藍色框框所示)

Predicted result

18

實驗一 以晶圓圖2x2 binary pattern的數量為特徵值

Before: Geometry + Radon + Corner detection (291 dim) Test accuracy = 94.1 % Remove "none" test accuracy = 90.7 % After: Geometry + Radon + Corner detection + 2×2 binary pattern (306 dim) Test accuracy = 94.2 % Remove "none" test accuracy = 91.0 %

	Center	Loc	Near-full	Random	none
Center	92.2% (118)	1.6% (2)	0	5.5% (7)	0.8% (1)
Loc	2.9% (29)	89.7% (886)	0	5.3% (52)	2.1% (21)
Near-full	0	4.7% (2)	81.4% (35)	4.7% (2)	9.3% (4)
Random	0.8% (10)	6.5% (82)	0	92.2% (1161)	0.5% (6)
none	0.4% (34)	3.2% (285)	0.3% (25)	1.1% (100)	95.0% (8478)

	Center	Loc	Near-full	Random	none
Center	93.0% (119)	1.6% (2)	0	4.7% (6)	0.8% (1)
Loc	2.8% (28)	90.6% (895)	0	4.5% (44)	2.1% (21)
Near-full	0	0	79.1% (34)	11.6% (5)	9.3% (4)
Random	0.9% (11)	7.5% (94)	0.2% (2)	91.0% (1146)	0.5% (6)
none	0.4% (37)	3.2% (287)	0.3% (25)	1.1% (96)	95.0% (8477)

以晶圓圖上的轉角點數量為特徵值

實驗三

透過特徵選取提升辨識結果 (1/3)

- ○特徵選取方法:Sequential forward selection (簡稱SFS)
- 辨識率衡量方式:以本實驗的測試資料集辨識率結果,作為每次特徵選取的依據,辨識率計算如下:

辨識率 = 測試資料中錯誤樣式(pattern)晶圓圖辨識正確的數量 測試資料中錯誤樣式(pattern)晶圓圖總數量

○分類器:支撑向量機(SVM)

特徵值	資料量	所需時間
306	Training set:2489片 Pattern資料 Test set:2418片 Pattern資料	35.3hr

實驗三透過特徵選取提升辨識結果(2/3)

透過特徵選取提升辨識結果 (3/3)

實驗三

特徵種類	Geometry	Radon	Miscellaneous	Total	2
特徵選取前(Dim)	198	92	16	306	
特徵選取後(Dim)	103	51	9	163	

實驗四 降維實驗 (1/2)

- 實驗資料:原先訓練資料(11370)切半,分別為訓練資料、驗證資料(各5685)
 降維方式與結果:
 - Principal component analysis (PCA) 將資料作壓縮 (306 → 132 dim)
 - Linear discriminant analysis (LDA) 將不同資料點分開 (132→114 dim)

實驗四 降維實驗 (2/2)

實驗結果分析 將所有實驗特徵加入後

特徵值種類	維度	辨識率結果(%) (Remove"none" test accuracy)
2×2 binary pattern(15)	15	67.2
Corner detection (1)	1	42.0
2×2 binary pattern(15) + Corner detection (1)	16	69.5
Geometry (198) + Radon (92) + 2×2 binary pattern (15)	305	88.8
Geometry (198) + Radon (92) + Corner detection (1)	291	90.7
Geometry (198) + Radon (92) + 2×2 binary pattern (15) + Corner detection (1)	306	91.0
After feature selection	163	92.1
After dimensionality reduction	114	91.1

	所需時間 (s)	平均時間 (s/per wafer)
特徵擷取時間	4860.4	0.2140
訓練時間	34.1	0.0030
測試時間	24.94	0.0022

25/43

Other Prediction Error for Small-die Wafers

26/43

本研究對TSMC的實際效益

- 以台積電為例,2013年第一季生產的晶圓高達388萬 片,平均每日製造的晶圓約為4.3萬片,人工觀察晶 圓圖勢必過於耗時。我們的系統也相當有效率,以 一台個人電腦的運算能力而言,只需約1.4個小時即 可處理一日的產能。
- 經過專家評估,假設本系統每天將替工程師節省一 小時工時,假設平均每天有100個工程師使用,則一 年約250個工作天即可省下25000小時,每年創造的 經濟效益約100萬美元。
- 目前此項技術已經在台積電上線(計畫的上線率低於 10%),各廠生產的晶圓都會透過本系統來進行檢查, 證明了本系統的有效性與可靠性。

Current Status

- ●獲得「2014 IPPR技術創新暨產業應用獎」優等獎
 ○論文發表
 - Ming-Ju Wu, Jyh-Shing Roger Jang, and Jui-Long Chen, "Wafer Map Failure Pattern Recognition and Similarity Ranking for Large-scale Datasets", IEEE Trans. on Semiconductor Manufacturing, 2015.
 - 晶圓錯誤樣式辨識的設計與改進(Design And Improvement of Wafer Failure Pattern Recognition),林坤優,清華大學碩 士論文,2014.

Singing Voice Separation and Pitch Extraction from Monaural Polyphonic Audio Music Via DNN and Adaptive Pitch Tracking

張智星

Multimedia Information Retrieval Lab Dept. of CSIE, National Taiwan University

Introduction

- Singing voice separation (SVS)
 - Extract singing voice from polyphonic audio music
 - Applications
 - Singing identification
 - Lyrics recognition & alignment
 - Singing assistance for karaoke
- Audio melody extraction (AME)
 - Extract major pitch from polyphonic audio music
 - Applications
 - Cover song identification
 - Database construction for query by singing/humming
 - Singing scoring
- Proposed approaches
 - DNN for SVS, adaptive-UPDUDP for AME

Overall System Flowchart

Steps in Singing Voice Separation

- Convert music into spectrogram
 - Short-time Fourier transform (STFT)
 - Mixture, voice, background music (b.g.m.)
- Deep neural network (DNN)
 - Nonlinear mapping from mixture spect. to vocal and b.g.m. spect.
 - Activation function : Sigmoid
 - Objective function : Square error
 - Gradient Optimization : RMSProp
 - Dropout rate : 0.5
 - GPU used : true
- Convert voice spectrogram into music
 - Inverse short-time Fourier transform (ISTFT)

33/43

Details of Singing Voice Separation

Vocal voice reconstruction

- $m(f) = |\widetilde{y}_1(f)|/(|\widetilde{y}_1(f)| + |\widetilde{y}_2(f)|)$ f = 1, 2, ... F (frequency bins)
- $\widetilde{s}_1(f) = m(f)z(f)$ • $\widetilde{s}_2(f) = (1 - m(f))z(f)$, where z(f) is mixture spectrogram
- \widetilde{S}_1 : estimated voice spectrogram
- \widetilde{S}_{2} : estimated background music spectrogram

Method for Singing Pitch Extraction

- Unbroken Pitch Determination Using Dynamic Programming (UPDUDP)
 - Average magnitude difference function (AMDF)
 - Calculate each frame's AMDF vector
 - Objective function

J. C. Chen and J.S. Jang, "TRUES: Tone Recognition Using Extended Segments," in ACM Transactions on Asian Language Information Processing, No. 10, Vol. 7, Aug 2008.

Adaptive UPDUDP

• Adaptive UPDUDP for finding a good ϑ

- Goal : Find the proper ϑ
- Target equation: $d(\theta) = \max_{i=1 \sim n-1} |s_i s_{i+1}| < \tau$

• Pitch curve :
$$s = [s_1, \dots s_i, \dots s_n]$$
 (semitones)

- τ : 7 semitones
- Algorithm : identify the interval $\hat{I} = [\theta_l, \theta_u]$ to satisfy the condition $d(\theta_l) \ge \tau$ and $d(\theta_u) \le \tau$

• if $d(\vartheta) == 0$, we are done.

(a) Set I₀ = [θ₀, θ₁] = [0,1]. If the bracket condition is fulfilled, then we are done with Î = I₀. Otherwise set <u>i</u>=1 go to the next step.
(b) Set I_i = [θ_i, θ_{i+1}] with θ_{i+1} = 2θ_i.
(c) If the bracket condition for I_i is fulfilled, then we are done with Î = I_i. Otherwise increment <u>i</u> and go back to step b.

Example of Adaptive UPDUDP

36/43

Corpora for Experiments

o MIR-1K dataset

- 1000 song clips
- Durations : 4-13 secs
- Sample rate : 16K Hz
- 110 Chinese popular karaoke songs
- Sung by male and female amateurs

o iKala dataset

- 252 song clips (public set)
- Durations : 30 secs
- Sample rate : 44.1K Hz
- Sung by male and female professionals

AME vs. SVS

• Dataset : MIR-1K

- 175 clips for training, 825 clips for testing
- Method : DNN+ UPDUDP

Indices of DNN architecture	Numbers of nodes in each hidden layer	Numbers of hidden layers
1	64	3
2	128	1
3	128	2
4	256	2
5	1024	1
6	2048	1
7	512	2
8	768	1
9	512	1
10	256	3
11	768	2
12	512	3
13	768	3
14	1024	3

Experimental Results of SVS

o Dataset : MIR-1K

- 175 clips for training, 825 clips for testing
- Compare different pitch-tracking method on extracted vocal

Accuracy of Pitch Tracking

SVS Results for MIREX 2015

• Singing voice separation on MIREX 2015

• Choose 126 clips from iKala dataset for training randomly

Settings	FJ1	FJ2	
Prog. language	Matlab		
Initial learning rate	0.0	001	
Dropout fraction	0.	.5	
Activation function	Sign	noid	
Cost function	Square error		
Gradient optimization	RMSProp		
Num. of nodes / layer	. 1024		
Num. of hidden layers	3	1	
Training data	126 files from the publ set of iKala.		
Training time	7.70 hours	1.73 hours	

/43

AME Result for MIREX 2015

Competition result of audio melody extraction

- FYJ1=DNN+UPDUDP
- FYJ4=DNN+adaptive UPDUDP

Demo of Singing Voice Separation

Online demo of our singing voice separation

• http://mirlab.org/demo/singingVoiceSeparation

Conclusions

- Data science is on the rise!
 - Big data, machine learning, data mining...

• Thanks go to ...

- TSMC
- Terasoft